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UAS Research @ BYU

Autonomous Vehicles

Path Planning
Trajectory Generation

• Cooperative timing problems

•  Cooperative persistent imaging
•  Cooperative fire monitoring
•  UAV/UGV Coordination
•  Consensus seeking

•  3D Waypoint path planning
•  Wind compensation 
•  Collision avoidance

• Optic flow sensor
• Laser ranger
• EO cameras

•  Image Stabilization
•  Geo-location 
•  Vision aided tracking and engagement

•  Autopilot design for small UAVs
•  Attitude estimation
•  Adaptive control
•  Tailsitter guidance and control

Cooperative Control

Image/Sensor Directed Control



Autonomous Flight For Miniature Air Vehicles

2004 2012

Sensor Based Flight
• Optic Flow 
• Laser range finder
• EO/IR
Path Following
• Robust to wind
• Computationally

efficient
Kestrel Autopilot
• Auto take-off, land
• Waypoint NAV
• GPS guided 

Applications
• Canyon following
• Collision avoidance
• GPS denied navigation
Applications
• Precision Navigation
• Target tracking
• Target geo-location
Technology Transition



18 Years of UAS Research at BYU



C-UAS



Unmanned Aircraft Impact
➢ Projected impact of UAS tremendous

➢ Job creation – over 100,000 new jobs

➢ Economic growth – $82B

➢ Unmanned aircraft are a game changer

➢ Demonstrated convincingly in military applications

➢ Widespread impact expected in commercial applications

➢ Question: Not if, but how soon and to what degree?

➢ Numerous challenges to overcome – opportunities for innovation



Envisioned Future for UAS/Autonomous Systems

Increasing safety, reliability, autonomy, public acceptance

Unmanned aircraft

Self-driving cars

Personal self-piloted aircraft



Safe and reliable autonomous flight

• Robustness to loss/degradation of GPS

Increased capabilities in range, payload, agility

• Robust tracking of ground based targets

Significant Technical Gaps
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Motivation & Background

Degraded 
GPS

GPS-Available
• Most current UAS
• Available commercially 

and for military
• Works well when the 

assumption holds
• Catastrophic failure 

when GPS is 
unavailable

GPS-Denied
• Major area of 

research
• Works well under 

strong assumptions
• Structured 

environment
• Does not leverage 

available GPS

• Intermittent
• Erroneous
• Becoming a focus 

of research 



GPS-degradation
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Availability:
  Indoors

  Urban canyon

  Sensor failure

  Foliage

  Jamming

Uncertainty:
  Atmospheric delays

  Dilution of precision

  Number of satellites

  Multipath

  Spoofing



Objective: 
Allow UAS to operate robustly in any environment 
with intermittent or degraded GPS.
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Relative navigation intuition

Driver Passenger “Riding Shotgun”
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Estimate state and plan actions with 

respect to local environment.
Observe landmarks (signs), reference 
map, plan high-level route.

Low frequency, relative directions



Relative navigation architecture
Flight critical front-end decoupled 
from backend (i.e. observable, 
real-time, onboard)

Not specify to any one platform, 
sensor suite, estimation and 
control strategy.

Back-end scalable for distributed 
multi-agent cooperation.
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Relative Navigation Framework



Example State Estimates
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➢ Back End

➢ Constructs graph from front-end using 

odometry

➢ OpenFABMAP for place recognition between 

nodeframes

➢ or GPS measurement

➢ g2o for graph optimization

Relative Navigation Framework

Edges
Node



Approach comparison
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Pseudo-global Stochastic cloning Robocentric Relative Navigation



Global Reconstruction
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Sample Covariance:

Cartesian coordinates (ellipse)

Exponential coordinates (banana)



Simulation performance
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Example trajectory Accuracy



Simulation performance
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Consistency: Bias Consistency: Uncertainty



Hardware performance
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~20 lines of code difference



Indoor Flight Video
➢ 330 m, 12-minute flight

➢ Figure 8 pattern, 5 loops

➢ Components of architecture functioning as intended

• Demonstrates performance of real-time relative 
front end

• Using visual odometry, IMU data to estimate states

http://www.youtube.com/watch?v=AV2syJqqPvc


Relative Nav Front-End Results
Visual Odometry Only VO + MEKF



Relative Nav Front-End Results
Visual Odometry 
only

VO + 
MEKF



Relative Nav Back-End Results
After OptimizationBefore Optimization



Relative Nav Back-End Results
After OptimizationBefore Optimization



Back-End Improvements

▪ Brittle to false-positive loop closures
▪ GPS not utilized

• Must be robust to degraded or 
intermittent GPS

False-positive loop closure Standard LS optimization Robust LS optimization



Incorporating GPS

VZ
GPS

LC

• Add a “virtual zero” node to the graph
– Virtual zero represents the origin of an absolute global coordinate frame

• Constrain the virtual zero to another graph node with no certainty
– This constraint represents the absolute global position of the corresponding node
– Can be constrained to any node in the graph, we typically use the first node

• When a GPS measurement is received, add a new constraint between the receiving node and the 
virtual zero



Multi-Sensor Estimation
Single Sensor Estimation

➢ Current state of the art
➢ Poor robustness

➢ Brittle to changes in environment
➢ Lighting, structure, etc.

Multi-Sensor Estimation

➢ Complementary sensing modalities
➢ Redundancy

➢ Increased robustness



Multi-Sensor Estimation

Advantages
➢ Generic: can accept any odometry-like update
➢ Consistent: accounts for propagation of uncertainty through the system
➢ Allows for asynchronous keyframes between sensors
➢ Seamlessly handles odometry failure and re-initialization

Challenges
➢ Each sensor maintains its own keyframe at a 

given moment
➢ Measurement with respect to different 

coordinate systems

Solution
➢ Augment state with information about 

odometry keyframes
➢ EKF framework



➢ Indoor environment, post-processed data
➢ Odometry sources:

➢ Visual odometry with RGB-D camera (fails in dark room)
➢ Scan matching with laser scanner (fails in long hallways)

➢ Manual gating of odometry in indicated regions

Multi-Sensor Estimation

RGB-D 
only

Laser 
only

Multi-sensor



Flight Results

● 10+ minute flight.
● ~1 m error on first loop 

closure.
● Create globally-consistent 

metric map during flight.
● Maintains stability through 

optimization.
● Autonomously navigate 

through previously 
observed areas, including 
indoor/outdoor transition.

http://www.youtube.com/watch?v=rX8_Y6iX3v8


Cloud-Enabled Multi-Agent Operation

The Backend can be completely decoupled from 

the real-time estimation and control



Cloud-Enabled Multi-Agent Operation
Use “cloud” resources to share a common backend



Multi-Agent Simulation
Two multirotors simulated in ROS/Gazebo.  Sharing a backend in the cloud.



Multi-Agent Simulation

• Both multirotors were initialized with initial estimate of (0,0,0).  
• Loop closures allowed global backend to solve for the optimized map containing 

odometry from both multirotors. 
• No control jumps from state optimization



Implications

➢ Relative Navigation means map “slides around” underneath the agent, 

without disrupting its state estimation and control.

➢ Multiple agents can work together, communicating only through the 

cloud, and create optimized maps in real time.

➢ State jumps from optimization do not result in control jumps or 

estimation jumps.
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Project Summary

Main Objective: Increase the accuracy and robustness of 
visual tracking from UAS 

Technical Approach:
• Multiple Target Tracking - Recursive RANSAC Algorithm
• Computer vision techniques
• Flight control and gimballing algorithms that enhance tracking
• Human Interaction
• Exploit embedded GPUs for on-board processing
• Flight demonstrations

41



Motivation: Geolocation

• Note that video tracker gets 
stuck on manhole. 

• Human intervention is 
required to re-acquire the 
truck.

• Frequent interaction 
required.

• Human identifies target in the image

• Use GPS, IMU, terrain model to geolocate target

• Maneuver UAS and gimbal to keep the target in the camera 
field of view.
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http://www.youtube.com/watch?v=KxbC9S1V20U


Motivation: Precision Landing

● User guides the vehicle through video 
interface

● Off-board vision procession

● Frequent human interaction is 
required because the tracker is not 
robust.
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http://www.youtube.com/watch?v=Yjrf6_QRlOg


Current State of the Art

Multiple Target Tracking 

Nearest Neighbor 

Bayesian filtering: KF, EKF, UKF, PF

JPDA filter

MHTfilter

PHD filter

Computer Vision

Feature Tracking

Segmentation

Background Subtraction

Histogram/Mean Shift

Contours

Radar Community Vision Community

UAV Application Community

UAV Tracking

User intensive

Many human operators

Persistent oversight needed
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• New algorithm – developed at BYU

• Uses fast random search to find potential tracks

• Produces many potential tracks; keeps those most consistent with data

• Fast data association mechanism

• Excellent track continuity

• Robust performance in cluttered data

Recursive-RANSAC
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
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Random Sample Consensus (RANSAC)
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Recursive RANSAC
Measurements received sequentially:
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Recursive RANSAC
Use current measurement with RANSAC to form 
potential models / hypothesis:
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Recursive RANSAC
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Recursive RANSAC
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Recursive RANSAC
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Recursive RANSAC
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Recursive RANSAC
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Recursive RANSAC
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Recursive RANSAC
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Recursive RANSAC
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Recursive RANSAC
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Recursive RANSAC
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Recursive RANSAC for Dynamic Tracking

• Models are generated using Kalman 
Filter

• Nearly constant velocity/acceleration/jerk 
models

• Linear models make the RANSAC step fast
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R-RANSAC Applied to Video Tracking

➢ IMM R-RANSAC with PDA data association
➢ Nearly-constant acceleration models with three levels of process noise

➢ C/C++ Implementation
65

http://www.youtube.com/watch?v=WiIZEnROLoo


Moving Camera Low Light
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http://www.youtube.com/watch?v=imnXV-ovZj8


Radar Tracking using R-RANSAC
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http://www.youtube.com/watch?v=ROTSd9pOs9I


Moving Object w/ Moving Camera
• The first step in robust tracking is robust object detection.

• We use widely-known computer vision techniques (Lucas-Kanade Optical Flow, RANSAC Homography 
estimation) to register sequential frames and detect potential targets.

Find feature points in the current 
frame. We currently use Good 
Features to Track [1]. Using 
RANSAC, we match the features 
points to those of the last frame to 
find an affine homography between 
frames.

Taking the difference of the 
registered images gives a mask of 
possible moving objects.

We accept feature points that fall 
on the white parts of the mask as 
moving points. These are grouped 
together by position and velocity to 
identify individual targets. Velocity 
information help discriminate 
measurements from crossing 
targets.

68



Moving Object Detection
1. Detect features using Good Features to Track (Shi-Tomasi method)
2. Determine pixel movement using Lucas-Kanade Optical Flow
3. Calculate homography using RANSAC
4. Calculate net pixel movement by subtracting camera movement
5. Threshold pixel movement to detect moving objects

69



Track Management
• After moving points are detected, we input the measurements to the R-RANSAC algorithm to generate, 

merge, and delete tracks as needed.

• We use a nearly constant jerk model with position and velocity measurement as inputs to the Kalman 
Filter(s).

70

http://www.youtube.com/watch?v=_Uh3siQl8ho
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Some of many possible methods (each with advantages and disadvantages):

Motivation

72

Video Image Features Tracks

We choose what computer vision algorithm to implement.

? R-RANSAC

Feature Motion Direct velocity information Less effective for distant targets

Difference Image Frequent measurements A bit noisy, position-only

Direct Template Matching Can track stopped targets Cannot initialize tracks, drifts



The CV frontend is generally the weak link. So we expanded R-RANSAC to 
accept multiple measurement sources, leveraging the strengths of each.

Video

Image Features

TracksImage Features

Image Features

Feature 
Motion

R-RANSAC
with

Fusion

Difference 
Image

Template 
Matching

Sensor Fusion in R-RANSAC (new)
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Inside R-RANSAC, a centralized fuser combines the provided information into global 
estimates. This provides fault tolerance in the visual front end and robust track continuity.



Feature-Aided Tracking
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• Motivation: Feature matching has the potential to disambiguate tracks
• Store and match previously-seen features to improve data association



Feature-Aided Tracking Initial Results
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http://www.youtube.com/watch?v=t8UFZszOKjM


• For each area of the image prioritize
◆ 1st: Moving points (reduce drift)
◆ 2nd: Feature matches (appearance model)
◆ 3rd: Optical flow (stopped objects)

• Result: One valid measurement for each 
area of the image

Combining Tracking Methods by 
Prioritization

76
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Ghost Track Reduction Results
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http://www.youtube.com/watch?v=oRZF7Eh84Hc
http://www.youtube.com/watch?v=wUYQfRQk9Es


Results on a Moving Camera
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http://www.youtube.com/watch?v=w4PPVtbk4GU


Poor Video Conditions:

• Aggressive UAV motion, no gimbal
• Rolling shutter and compression
• No GPU (for this case)

Results: Before and After (new)
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http://www.youtube.com/watch?v=vYHZNudnA_c
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• Challenge: object tracking in image frame versus inertial frame
• Method 1: Image-based tracking

• Method 2: Inertial-based tracking

Tracking Framework
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Image 
Features

R-RANSAC
Image 
Tracks

Target 
Localization

Image 
Features

Target 
Localization

R-RANSAC
Inertial 
Tracks



Image-based Tracking

• Measurements have little variance
• Gimbal pointing reduces image movement, 

causing lost tracks
• Image is easily cluttered with many targets

Image vs Inertial Tracking
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Inertial-based Tracking

• Large potential variance due to gimbal/uav pose estimation uncertainty

• Readily available tracks for cooperative tracking and control

• Not directly affected by poor homography estimates



• Small error in UAV/gimbal pose 
estimates cause large deviations in 
target localization estimates

• Camera and state estimator must 
be well synchronized

• Common to have a flat-earth 
assumption

Target Localization Challenges
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Image Tracking w/ Target Localization
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• Gazebo-ROS simulation
• Left image is R-RANSAC 

tracking two ATVs viewed from a 
UAV

• Right image is Rviz showing the 
instantaneous target localization 
estimate as yellow squares

• Sensors are loosely 
synchronized (localization 
estimate diverges on fast 
rotations)

http://www.youtube.com/watch?v=8uvnMaSukpk


• Robust Visual Inertial Odometry (ROVIO)
– State-of-the-art EKF-SLAM approach to VO that yields little drift in 

pose estimation

EKF Target Localization
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– Estimates bearing and distance of stationary 

landmarks relative to the UAV

– Operates in a robocentric framework

– Fuses image data with IMU data

– With landmark locations known, target can be 

located relative to them

– We separate UAV state from landmark state



• Simulation results of EKF 
estimator on a quadrotor
– Landmark and UAV 

estimates converge 
quickly

– Poor initializations lead to 
instability

– A globally stable solution, 
possibly less accurate, 
would be preferable

EKF Target Localization
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• Once 3 or more landmark 
estimates have converged:
– Approximate a plane via least 

squares using landmark 
estimates

– Inertial target location is 
approximately the intersection 
of the target’s bearing vector 
and this newly approximated 
plane

– Results shown to the right

EKF Target Localization

87



• Nonlinear Observer SLAM
• Simultaneously estimates UAV 

position, velocity bias, and landmark 
inertial positions

• Convergence may be slow, iterated 
observer improves this

• Assumes attitude is known
• Guaranteed global stability iff:

– Origin direction is measured
– Bearings persistently excited

NO-SLAM Target Localization

88



• Results of target estimation to the 
right

• Converges quickly after each new 
origin due to observer iteration

• Error due to imperfect origin 
estimates and deteriorating attitude 
estimation

NO-SLAM Target Localization
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• Smooth estimation after new origin
• Thoroughly analyze observer iteration
• Improve NO-SLAM to work for hover and constant 

velocity flights

Next Steps

90
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Current Progress - Flight Control
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Current Progress - Flight Control
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Current Progress - Video
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http://www.youtube.com/watch?v=hXANnuVYaX8
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• Autonomous safety system designed to enable emergency 
landings in semi-populated areas

• Uses a fixed camera to detect motion in the landing zone

• Joint project with NASA Langley Research Center

Safe2Ditch

96



• Autonomously choose a low-risk area to land from database
• Use camera to refine landing zone during descent
• Assumes 60 seconds for landing

Safe2Ditch

97



• 3DR Y6 frame
• 3DR GPS + Compass
• Pixhawk + ArduCopter
• NVIDIA Jetson TX2

– CUDA-enabled Visual MTT

• IDS uEye 800x600 @30fps
• 12mm lens,  ~34°  AFOV

Hardware Platform and Integration
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• Flat-earth model
• ROS hardware implementation
• Creates inertial R-RANSAC tracks

Geolocation of R-RANSAC Tracks
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http://www.youtube.com/watch?v=0oECAdtSUE8


NASA Flight Tests
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http://www.youtube.com/watch?v=IzLo9RERRqE


• Find the inertial position of 
the camera’s principal point

• As the multirotor descends, 
use potential fields to push 
the principle point away 
from targets

Potential Field Track Avoidance
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http://www.youtube.com/watch?v=8WC5BJ-nGaU
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• Specifications
– GPU: 256 Pascal CUDA Cores
– CPU: Dual Denver + Quad ARM A57
– 8GB RAM
– 32GB eMMC

• Attach to UAV with ConnectTech Inc
Orbitty carrier board

NVIDIA Jetson TX2
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• TX2 with GPU can handle 10Hz and 15Hz with ~50% 
CPU/GPU utilization

HW Platform Runtime Comparison
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• Future holds exciting opportunities for small UAS
• Many challenges with vision based flight

– Long term GPS degraded navigation
– Robust object tracking

Summary
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