

Vision Based Navigation and Tracking with Small UAS

Randal Beard

Brigham Young University

Outline

- Introduction and Motivation
- > GPS Degraded Navigation
- Robust Target Tracking

UAS Research @ BYU

Cooperative Control

Path Planning Trajectory Generation

- Cooperative timing problems
- Cooperative persistent imaging
- Cooperative fire monitoring
- UAV/UGV Coordination
- Consensus seeking
- 3D Waypoint path planning
- Wind compensation
- Collision avoidance
 - Optic flow sensor
 - Laser ranger
 - EO cameras
- Image Stabilization
- Geo-location
- Vision aided tracking and engagement
- Autopilot design for small UAVs
- Attitude estimation
- Adaptive control
- Tailsitter guidance and control

C-UAS

Image/Sensor Directed Control

Autonomous Vehicles

Autonomous Flight For Miniature Air Vehicles

Sensor Based Flight

- Optic Flow
- Laser range finder
- EO/IR

Path Following

- Robust to wind
- Computationally
 - efficient

Kestrel Autopilot

- Auto take-off, land
- Waypoint NAV
- GPS guided

Applications

- Canyon following
- Collision avoidance
- GPS denied navigation

Applications

- Precision Navigation
- Target tracking
- Target geo-location

Technology Transition

2012

18 Years of UAS Research at BYU

C-UAS

Unmanned Aircraft Impact

- Projected impact of UAS tremendous
 - Job creation over 100,000 new jobs
 - Economic growth \$82B
- Unmanned aircraft are a game changer
 - Demonstrated convincingly in military applications
 - Widespread impact expected in commercial applications
 - > Question: Not if, but how soon and to what degree?
- Numerous challenges to overcome opportunities for innovation

Envisioned Future for UAS/Autonomous Systems

Unmanned aircraft

Increasing safety, reliability, autonomy, public acceptance

C-UAS

Self-driving cars

Personal self-piloted aircraft

Significant Technical Gaps

Safe and reliable autonomous flight

• Robustness to loss/degradation of GPS

Increased capabilities in range, payload, agility
Robust tracking of ground based targets

Outline

- Introduction and Motivation
- > GPS Degraded Navigation
- Robust Target Tracking

Motivation & Background

GPS-Available

- Most current UAS
- Available commercially and for military
- Works well when the assumption holds
- Catastrophic failure when GPS is unavailable

Degraded GPS

- Intermittent
- Erroneous
- Becoming a focus of research

GPS-Denied

- Major area of research
- Works well under strong assumptions
 - Structured environment
- Does not leverage available GPS

GPS-degradation

Availability: Indoors Urban canyon Sensor failure Foliage Jamming Uncertainty: Atmospheric delays Dilution of precision Number of satellites Multipath Spoofing

Objective: Allow UAS to operate robustly in any environment with intermittent or degraded GPS.

Relative navigation intuition

Driver

Passenger "Riding Shotgun"

Estimate state and plan actions with respect to local environment.

Observe landmarks (signs), reference map, plan high-level route.

Low frequency, relative directions

Relative navigation architecture

Flight critical front-end decoupled from backend (i.e. observable, real-time, onboard)

Not specify to any one platform, sensor suite, estimation and control strategy.

Back-end scalable for distributed multi-agent cooperation.

Relative Navigation Framework

Example State Estimates

Relative Navigation Framework

- Back End
 - Constructs graph from front-end using odometry
 - OpenFABMAP for place recognition between nodeframes
 - or GPS measurement
 - g2o for graph optimization

C-UAS CHEE FRE UMAANEE AIRCRAFT SYSTEMS

Approach comparison

Global Reconstruction

Sample Covariance:

$$\Sigma = \frac{1}{N} \sum_{n}^{N} \mathbf{e}_{n} \mathbf{e}_{n}^{\mathsf{T}}$$

Cartesian coordinates (ellipse)

 $\mathbf{e} = \ominus \, \hat{\mathbf{x}} \oplus \mathbf{x} \\ = \mathbf{x} - \hat{\mathbf{x}}$

Exponential coordinates (banana)

 $\mathbf{e}_{\mathrm{RN}} = \log\left(\ominus \hat{\mathbf{x}} \oplus \mathbf{x}\right)$

 $\log: SE(2) \to \mathfrak{se}(2)$

Simulation performance

Example trajectory

Accuracy

Simulation performance

Consistency: Bias

(f) \mathbf{e}_{RN}

Consistency: Uncertainty

F

Hardware performance

Indoor Flight Video

- > 330 m, 12-minute flight
- Figure 8 pattern, 5 loops
- Components of architecture functioning as intended

- Demonstrates performance of real-time relative front end
- Using visual odometry, IMU data to estimate states

Relative Nav Front-End Results

VO + MEKF

BYU -

Relative Nav Front-End Results

BYU -

Relative Nav Back-End Results

Relative Nav Back-End Results

After Optimization

Back-End Improvements

Standard LS optimization

Robust LS optimization

- Brittle to false-positive loop closures
- GPS not utilized
 - Must be robust to degraded or intermittent GPS

Incorporating GPS

- Add a "virtual zero" node to the graph
 - Virtual zero represents the origin of an absolute global coordinate frame
- Constrain the virtual zero to another graph node with no certainty
 - This constraint represents the absolute global position of the corresponding node
 - Can be constrained to any node in the graph, we typically use the first node
- When a GPS measurement is received, add a new constraint between the receiving node and the virtual zero

Multi-Sensor Estimation

Single Sensor Estimation

- Current state of the art
- Poor robustness
- Brittle to changes in environment
 - Lighting, structure, etc.

Multi-Sensor Estimation

- Complementary sensing modalities
- Redundancy
- Increased robustness

Multi-Sensor Estimation

Challenges

- Each sensor maintains its own keyframe at a given moment
- Measurement with respect to different coordinate systems

Solution

- Augment state with information about odometry keyframes
- > EKF framework

Advantages

- Generic: can accept any odometry-like update
- Consistent: accounts for propagation of uncertainty through the system
- Allows for asynchronous keyframes between sensors
- Seamlessly handles odometry failure and re-initialization

Multi-Sensor Estimation

BYU MAGICC LAB

- > Indoor environment, post-processed data
- > Odometry sources:
 - > Visual odometry with RGB-D camera (fails in dark room)
 - > Scan matching with laser scanner (fails in long hallways)
- Manual gating of odometry in indicated regions

Flight Results

- 10+ minute flight.
- ~1 m error on first loop closure.
- Create globally-consistent metric map during flight.
- Maintains stability through optimization.
- Autonomously navigate through previously observed areas, including indoor/outdoor transition.

Cloud-Enabled Multi-Agent Operation

The Backend can be completely decoupled from the real-time estimation and control

Cloud-Enabled Multi-Agent Operation

Use "cloud" resources to share a common backend

Multi-Agent Simulation

Two multirotors simulated in ROS/Gazebo. Sharing a backend in the cloud.

Multi-Agent Simulation

- Both multirotors were initialized with initial estimate of (0,0,0).
- Loop closures allowed global backend to solve for the optimized map containing odometry from both multirotors.
- No control jumps from state optimization

Implications

 Relative Navigation means map "slides around" underneath the agent, without disrupting its state estimation and control.

Multiple agents can work together, communicating only through the cloud, and create optimized maps in real time.

 State jumps from optimization do not result in control jumps or estimation jumps.

Outline

- Introduction and Motivation
- > GPS Degraded Navigation
- Robust Target Tracking

Project Summary

Main Objective: Increase the accuracy and robustness of visual tracking from UAS

庎

Technical Approach:

- Multiple Target Tracking Recursive RANSAC Algorithm
- Computer vision techniques
- Flight control and gimballing algorithms that enhance tracking
- Human Interaction
- Exploit embedded GPUs for on-board processing
- Flight demonstrations

Motivation: Geolocation

- Human identifies target in the image
- Use GPS, IMU, terrain model to geolocate target
- Maneuver UAS and gimbal to keep the target in the camera field of view.

- Note that video tracker gets stuck on manhole.
- Human intervention is required to re-acquire the truck.
- Frequent interaction required.

Motivation: Precision Landing

- User guides the vehicle through video interface
- Off-board vision procession
- Frequent human interaction is required because the tracker is not robust.

Current State of the Art

Multiple Target Tracking Nearest Neighbor Bayesian filtering: KF, EKF, UKF, PF JPDA filter MHTfilter PHD filter

Radar Community

UAV Tracking

User intensive

Many human operators

Persistent oversight needed

Computer Vision Feature Tracking Segmentation Background Subtraction Histogram/Mean Shift Contours

Vision Community

Outline

- Introduction and Motivation
- > GPS Degraded Navigation

Robust Target Tracking

- Recursive RANSAC
- Track Continuity
- Inertial vs image tracking SLAM
- Flight control and gimbal servoing
- Safe2Ditch
- Hardware implementation

BYU MAGICC LAB

- New algorithm developed at BYU
- Uses fast random search to find potential tracks
- Produces many potential tracks; keeps those most consistent with data
- Fast data association mechanism
- Excellent track continuity
- Robust performance in cluttered data

– – Inlier Region

Measurements received sequentially:

Use current measurement with RANSAC to form potential models / hypothesis:

Use best hypothesis to form \mathcal{M}_1 :

Use current measurement with RANSAC to form a model:

Next Measurement: Inlier to model \mathcal{M}_1

Next Measurement: Outlier to model \mathcal{M}_1 . Is it an outlier or does it come from another model?

Next Measurement: Outlier to model \mathcal{M}_1

Next Measurement: Outlier to models \mathcal{M}_1 and \mathcal{M}_2

Next Measurement: Outlier to model \mathcal{M}_1 - \mathcal{M}_3

Next Measurement: Inlier to model \mathcal{M}_4

Next Measurement: Inlier to model \mathcal{M}_4

Identify models with most inliers: Prune \mathcal{M}_2 and \mathcal{M}_3 .

Recursive RANSAC for Dynamic Tracking

R-RANSAC Applied to Video Tracking

- IMM R-RANSAC with PDA data association
 - Nearly-constant acceleration models with three levels of process noise
- C/C++ Implementation

Moving Camera Low Light

BYU MAGICC LAB

Radar Tracking using R-RANSAC

Moving Object w/ Moving Camera

BYU MAGICC LAB

- The first step in robust tracking is robust object detection.
- We use widely-known computer vision techniques (Lucas-Kanade Optical Flow, RANSAC Homography estimation) to register sequential frames and detect potential targets.

Find feature points in the current frame. We currently use Good Features to Track [1]. Using RANSAC, we match the features points to those of the last frame to find an affine homography between frames.

Taking the difference of the registered images gives a mask of possible moving objects.

We accept feature points that fall on the white parts of the mask as moving points. These are grouped together by position and velocity to identify individual targets. Velocity information help discriminate measurements from crossing targets.

Moving Object Detection

- 1. Detect features using Good Features to Track (Shi-Tomasi method)
- 2. Determine pixel movement using Lucas-Kanade Optical Flow
- 3. Calculate homography using RANSAC
- 4. Calculate net pixel movement by subtracting camera movement
- 5. Threshold pixel movement to detect moving objects

Track Management

- After moving points are detected, we input the measurements to the R-RANSAC algorithm to generate, merge, and delete tracks as needed.
- We use a nearly constant jerk model with position and velocity measurement as inputs to the Kalman Filter(s).

Outline

- > Introduction and Motivation
- > GPS Degraded Navigation

Robust Target Tracking

- Recursive RANSAC
- Track Continuity
- Inertial vs image tracking SLAM
- Flight control and gimbal servoing
- Safe2Ditch
- Hardware implementation

We choose what computer vision algorithm to implement.

Some of many possible methods (each with advantages and disadvantages):

Feature Motion	Direct velocity information	Less effective for distant targets
Difference Image	Frequent measurements	A bit noisy, position-only
Direct Template Matching	Can track stopped targets	Cannot initialize tracks, drifts

Sensor Fusion in R-RANSAC (new)

The CV frontend is generally the weak link. So we expanded R-RANSAC to accept multiple measurement sources, leveraging the strengths of each.

Inside R-RANSAC, a centralized fuser combines the provided information into global estimates. This provides fault tolerance in the visual front end and robust track continuity.

Feature-Aided Tracking

- Motivation: Feature matching has the potential to disambiguate tracks
- · Store and match previously-seen features to improve data ass

Feature-Aided Tracking Initial Results

Combining Tracking Methods by Prioritization

- For each area of the image prioritize
 - 1st: Moving points (reduce drift)
 - 2nd: Feature matches (appearance model)
 - 3rd: Optical flow (stopped objects)
- Result: One valid measurement for each area of the image

Ghost Track Reduction Results

Results on a Moving Camera

Results: Before and After (new)

Poor Video Conditions:

- Aggressive UAV motion, no gimbal
- Rolling shutter and compression
- No GPU (for this case)

Outline

- > Introduction and Motivation
- > GPS Degraded Navigation

Robust Target Tracking

- Recursive RANSAC
- Track Continuity
- Inertial vs image tracking SLAM
- Flight control and gimbal servoing
- Safe2Ditch
- Hardware implementation

Tracking Framework

- Challenge: object tracking in image frame versus inertial frame
- Method 1: Image-based tracking

C-UAS

Image vs Inertial Tracking

Image-based Tracking

- Measurements have little variance
- Gimbal pointing reduces image movement, causing lost tracks
- Image is easily cluttered with many targets

Inertial-based Tracking

- Large potential variance due to gimbal/uav pose estimation uncertainty
- Readily available tracks for cooperative tracking and control
- Not directly affected by poor homography estimates

Target Localization Challenges

- Small error in UAV/gimbal pose estimates cause large deviations in target localization estimates
- Camera and state estimator must be well synchronized
- Common to have a flat-earth assumption

Image Tracking w/ Target Localization

- Gazebo-ROS simulation
- Left image is R-RANSAC tracking two ATVs viewed from a UAV
- Right image is Rviz showing the instantaneous target localization estimate as yellow squares
- Sensors are loosely synchronized (localization estimate diverges on fast rotations)

EKF Target Localization

- Robust Visual Inertial Odometry (ROVIO)
 - State-of-the-art EKF-SLAM approach to VO that yields little drift in pose estimation

- Estimates bearing and distance of stationary landmarks relative to the UAV
- Operates in a robocentric framework
- Fuses image data with IMU data
- With landmark locations known, target can be located relative to them
- We separate UAV state from landmark state

EKF Target Localization

- Simulation results of EKF estimator on a quadrotor
 - Landmark and UAV estimates converge quickly
 - Poor initializations lead to instability
 - A globally stable solution, possibly less accurate, would be preferable

EKF Target Localization

- Once 3 or more landmark
 estimates have converged:
 - Approximate a plane via least squares using landmark estimates
 - Inertial target location is approximately the intersection of the target's bearing vector and this newly approximated plane
 - Results shown to the right

NO-SLAM Target Localization

- Nonlinear Observer SLAM
- Simultaneously estimates UAV position, velocity bias, and landmark inertial positions
- Convergence may be slow, iterated observer improves this
- Assumes attitude is known
- Guaranteed global stability iff:
 - Origin direction is measured
 - Bearings persistently excited

NO-SLAM Target Localization

- Results of target estimation to the right
- Converges quickly after each new origin due to observer iteration
- Error due to imperfect origin estimates and deteriorating attitude estimation

Next Steps

- Smooth estimation after new origin
- Thoroughly analyze observer iteration
- Improve NO-SLAM to work for hover and constant velocity flights

Outline

- > Introduction and Motivation
- > GPS Degraded Navigation

Robust Target Tracking

- Recursive RANSAC
- Track Continuity
- Inertial vs image tracking SLAM
- Flight control and gimbal servoing
- Safe2Ditch
- Hardware implementation

Current Progress - Flight Control

C-UAS

- FOV camera field of view
- LOS line of sight vector from UAV to target
- θ UAV pitch angle in degree
- η camera vertical angle of view in degree
- M_y (vertical pixel resolution)/2 in pixel
- ϵ_y target location on vertical axis in image in pixel
- $\dot{\psi}^{d}$ desired yaw rate

92

Current Progress - Flight Control

• UAV forward motion

$$p_x = p_z \tan(45^\circ - \theta - \frac{\epsilon_y \eta}{M_y})$$
$$d_x = p_z (\tan(45^\circ - \theta - \frac{\epsilon_y \eta}{M_y}) - \tan(45^\circ - \theta))$$

• UAV side motion Transform the unit LOS vector from optical frame into Vehicle-1 frame.

$$\begin{bmatrix} \epsilon_x \\ \epsilon_y \\ 1 \end{bmatrix}_{optical frame} \rightarrow \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix}_{V-1 frame}$$
$$\dot{\psi}^d = p_y(scale factor)$$

Current Progress - Video

Outline

- > Introduction and Motivation
- > GPS Degraded Navigation

Robust Target Tracking

- Recursive RANSAC
- Track Continuity
- Inertial vs image tracking SLAM
- Flight control and gimbal servoing
- Safe2Ditch
- Hardware implementation

Safe2Ditch

- Autonomous safety system designed to enable emergency landings in semi-populated areas
- Uses a fixed camera to detect motion in the landing zone
- Joint project with NASA Langley Research Center

Safe2Ditch

- Autonomously choose a low-risk area to land from database
- Use camera to refine landing zone during descent
- Assumes 60 seconds for landing

Hardware Platform and Integration

- 3DR Y6 frame
- 3DR GPS + Compass
- Pixhawk + ArduCopter
- NVIDIA Jetson TX2
 - CUDA-enabled Visual MTT
- IDS uEye 800x600 @30fps
- 12mm lens, ~34° AFOV

Geolocation of R-RANSAC Tracks

- Flat-earth model
- ROS hardware implementation
- Creates inertial R-RANSAC tracks

NASA Flight Tests

Potential Field Track Avoidance

- Find the inertial position of the camera's principal point
- As the multirotor descends, use potential fields to push the principle point away from targets

Outline

- > Introduction and Motivation
- > GPS Degraded Navigation

Robust Target Tracking

- Recursive RANSAC
- Track Continuity
- Inertial vs image tracking SLAM
- Flight control and gimbal servoing
- Safe2Ditch
- Hardware implementation

NVIDIA Jetson TX2

- Specifications
 - GPU: 256 Pascal CUDA Cores
 - CPU: Dual Denver + Quad ARM A57
 - 8GB RAM
 - 32GB eMMC
- Attach to UAV with ConnectTech Inc Orbitty carrier board

HW Platform Runtime Comparison

 TX2 with GPU can handle 10Hz and 15Hz with ~50% CPU/GPU utilization

Summary

- Future holds exciting opportunities for small UAS
- Many challenges with vision based flight
 - Long term GPS degraded navigation
 - Robust object tracking

