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Global Flux of CO,

Mean Annual Air-Sea Flux for 2000 [Rev Jun 09] (NCEP 1I Wind, 3,040K, ['=.26)
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The flux of gas is the product of the gas transfer velocity and the
concentration difference between atmosphere and the ocean

F=KAC = KS(pCOZa _ pCOZw) Takahashi et al., 2009


Apresentador
Notas de apresentação
K is a function of turbulence and diffusivity expressed as Sc.
K is typically referenced to a Sc = 600 (CO2 at 20degrees).
Wind speed is typically used to parameterized K.
Disparity between two widely used parameterizations.
Wanninkhof determined from natural and bomb C14 inventory methods.
Liss-Merlivat determined from kSF6 dual tracer work on rockland lake and wind tunnels.
Scatter in the data.
Similar scatter observed from lakes of vastly different size (possible fetch dependence where k scales with the size of the lake). 
It is believed that this scatter may be due to surfactants.
It is also believed that the scatter at moderate wind speeds may be due to some wave-related mechanism.



- Liss and Merlivat (1986)
McGillis et al 2001
- Prytherch et al 2010a
- Edsonetal 2011
Best fit to all dual tracer data, Ho etal (2011b)
All dual tracer data
EC CO2, GasEx98, Edson et al (2011)
EC CO2, SO GasEx, Edson et al 2011
EC CO2, Knorr07, Miller et al (2009)
EC CO2, HIWASE, Prytherch et al (2010a)
EC DMS, multiple campaigns, Yang et al (2011)
EC DMS, Knorr07, Miller et al (2009)
EC DMS, Knorr06, Marandino et al (2009)
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“Air-Sea Interaction Processes
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Apresentador
Notas de apresentação
Myriad of processes affect air-sea interaction.
On the open ocean, wind speed is typically used to parameterize gas transfer.
Based on the fact that wind forcing generates turbulence through processes such as shear, wave-current interactions, wave breaking, bubbles, etc.
Turbulence is believed to control gas transfer.
Many times similar wind relationships are used in estuarine modeling.


Turbulence Scaling of Gas Transfer

oC D

Ficks Law F=D—=—"(Cy-aCy)=K(Cy —aCy)
0z JOp
K = d I
= Boundary Layer Scalin
T 5o Undary |ay ng Batchelor [1959] (Melville [1996]);

\ Brumley and Jirka [1987,1988]
7 :
S o vD* Batchelor Length Scale — turbulent microscale
. & for a passive scalar

TKE Dissipation Rate

Wavy Turbulent Films: Banerjee et al. [1968]
Surface Renewal: Lamont and Scott [1970]
Breaking Waves:  Kitaigorodskii [1984]

* Kinetic energy cascades from larger scales down to smaller scales.
 Turbulent kinetic energy dissipation rate describes the rate at which

this process occurs _ _
Experiments Estimated Turbulent Scales:

- Asher and Pankow [1986]
- Dickey et al. [1984]
- recently others



Summary for Moderate Wind Speeds and
Movies from SPIP COaStaI SyStemS

 Infrared imagery shows the spatial
and temporal variability that affects
alr-water exchange.

 Estuarine transfer velocities at low
wind speeds are shown to track the
turbulence generated during the
tidal cycle.

« Complex interplay between tidal-
and wind-driven exchange.



Apresentador
Notas de apresentação
2nd - Capture the variability.

4th - Model processes regardless of driving force.

The results of this work are a step toward a more accurate prediction of k for any gas in river, estuary and potentially coastal systems with varying wind, tidal, stratification, and morphological regimes. 


Infrared Imagery of Rain
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Apresentador
Notas de apresentação
In order to obtain data that are not influenced by solar radiation, a night rain experiment (RE3) was performed.  Figure 10 shows snapshots of infrared imagery of the Biosphere 2 ocean at successive times over the course of RE3.  The temperature variation over the image is approximately 1 °C.  Warmer regions are light and cooler regions are dark.  The first image in Figure 10a is a snapshot before a rain event.  At this time, the surface is cooler than the water below.  The temperature variations reveal small structures created from buoyancy-driven circulation.  A look at the movie of infrared imagery also reveals small drift motions caused by the wave field as well as the underlying near-surface current.  In Figure 10b, the rain begins. Airborne rain is observed as black (cool), very fine objects.  As rain impacts the water surface, small localized light (warm) patches are generated.  The warm patches are caused by energetic mixing disrupting the thin, cool surface layer of O(1 mm).  Warm water is entrained from below.  An individual raindrop causes a disruption of the surface aqueous boundary layer. At this point, the background buoyancy-driven circulation is still apparent.  Figure 10c demonstrates that the spatial extent of individual drops eventually will affect the whole ocean surface.  Each injected raindrop is seen to influence spatial scales of O(10cm) or less.  This scale is comparable to small breaking waves.  As the cumulative number of drops increases with time, more of the surface is disrupted by rain.  This process significantly enhances mixing.  Figure 10d shows that the turbulent disruptions of the TBL by raindrops have reached a level of steady-state saturation.  Comparing Figure 10a and d, it is clear that the surface mixing due to rain is complete in its spatial extent.  The turbulence due to the raindrops now dominates over the buoyancy-driven circulation that dominated previous to the inception of rain.  The raindrops are ubiquitous, the uniform surface mixing and subsequent air-water gas exchange are comparable to other seemingly more energetic processes such as wave breaking. 

The measurements show a rapid depletion of SF6 in the surface layer due to rain enhancement of air-sea gas exchange.  However, because vertical mixing is mitigated by stratification, the overall gas exchange rate is lower than that predicted from freshwater laboratory experiments. The findings suggest that short, intense rain events accelerate gas exchange in oceanic environments. 
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Apresentador
Notas de apresentação
The results clearly show that gas transfer under wind, waves, currents, rain, and surfactants indeed scales with the hypothesized model based on the turbulent dissipation rate over a wide range of environmental systems with different types of environmental forcing and processes. The constant of proportionality associated with (1) and used below was determined to be 0.419 ± 0.130 by minimizing the root mean square difference (±2.84 cm hr-1) between the measured transfer velocities and the right-hand-side of (1). This constant of proportionality for equation (1) is nearly identical to the theoretical value of 0.4 [Lamont and Scott, 1970] calculated from first principles. The root mean square difference for the wind speed parameterization is ±10.63 cm hr-1 and significantly larger than for the dissipation rate scaling. It is clear that the  scaling shows a higher correlation than the Wanninkhof [1992] relationship (coefficient of determination of 0.93 versus 0.07), especially for the cases where processes other than wind (i.e., tidal currents and rain) drive the near surface turbulence that dominates the transfer. Note that while the correlation is robust, e was measured at variable depths throughout these studies. Since the profile of turbulence near the air-water interface may be complicated by the interplay between wind, waves, current shear and other processes, measurements at depth will not be representative of e at the surface because the profile changes nonlinearly with environmental forcing (e.g., our rain case). 

Top) Gas transfer velocity versus modeled k as determined from (1) in four separate systems that include the Parker River Estuary, the Hudson River, the coastal ocean off the FRF pier at Duck, NC, and Biosphere 2 (rain; no wind or currents). Bottom) Gas transfer velocity versus modeled k as determined from the Wanninkhof [1992] wind-speed parameterization for the same data as on the Left. For those cases where there was no wind forcing (e.g., rain), a wind speed value of 0.2 m s-1 was used which is the lower bound implemented in the TOGA-COARE model to account for gustiness. 

The results of the field studies demonstrate the feasibility of the proposed model for predicting k using the turbulent dissipation rate in a variety of environmental conditions, natural systems, and forcing mechanisms. Our results show that a universal scaling for gas exchange exists based on the turbulent dissipation rate in the aqueous near-surface boundary layer. Based on these studies, we argue that more research is needed to gauge the effects of wind, tides, fetch, stratification, waves, and other processes on gas exchange from the open ocean to rivers and estuaries. This would meet the growing need among scientists to elucidate and develop better models that reduce the uncertainty in predicting k when calculating the exchange rates of CO2 and other trace gases, performing nutrient studies, or determining volatile pollutant transport. As these new capabilities become more widely accepted and implemented, it would allow scientists to evaluate how spatial and temporal variation in k affects our ability to calculate the relative importance of CO2 fluxes in regional and global biogeochemical cycles. 


Recall — the k conundrum

- Liss and Merlivat (1986)
McGillis et al 2001
- Prytherch et al 2010a
- Edson etal 2011
Best fit to all dual tracer data, Ho et al (2011b)
All dual tracer data
EC CO2, GasEx98, Edson et al (2011)
EC CO2, SO GasEx, Edson et al 2011 CO
EC CO2, Knorr07, Miller et al (2009) 2
EC CO2, HIWASE, Prytherch et al (2010a)
— EC DMS, multiple campaigns, Yang et al (201
EC DMS, Knorr07, Miller et al (2009)
EC DMS, Knorr06, Marandino et al (2009)
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Characterizing Microscale Wave Breaking

Incipient breaking of small scale waves that do not entrain air.
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Skin-layer disruption by microbreaking
events produces thermal signhatures that
can be detected and quantified using IR
imagery.

Hypothesis: Microscale  wave
breaking is the underlying physical
process that controls gas transfer at
low to moderate wind speeds.
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Apresentador
Notas de apresentação
Banner and Phillips coined the term microbreaking to describe the incipient breaking of small scale waves that do not entrain air.  WIDESPREAD!!!!
Parasitic capillaries and bore-like crest.
No visible whitecap.
Point out possible microbreakers.
Problem is one of detection.
However, nature benevolently generates a cool skin on the ocean surface.



Polarimeter Slope Topography

Y- and X-component surface slope arrays computed from polarimetric images
taken with the polarimeter during the RaDyO experiment in the Santa Barbara
Channel from R/P Flip Sept. 2008. The scale shows the relationship between
slope and grayscale.

Image scaleis1l mby1lm.U,;=9.2ms?



Wave Height from Polarimeter Topography
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Southern Ocean GasEx Experiment 2008
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Apresentador
Notas de apresentação
K is a function of turbulence and diffusivity expressed as Sc.
K is typically referenced to a Sc = 600 (CO2 at 20degrees).
Wind speed is typically used to parameterized K.
Disparity between two widely used parameterizations.
Wanninkhof determined from natural and bomb C14 inventory methods.
Liss-Merlivat determined from kSF6 dual tracer work on rockland lake and wind tunnels.
Scatter in the data.
Similar scatter observed from lakes of vastly different size (possible fetch dependence where k scales with the size of the lake). 
It is believed that this scatter may be due to surfactants.
It is also believed that the scatter at moderate wind speeds may be due to some wave-related mechanism.



Southern Ocean Movie



Apresentador
Notas de apresentação
While processing the CFT, observed that in the IR that the individual decay rates would vary substantially and were dependent on the influence of MSWB.
Patches affected by the MSWB decayed faster.
Distinguish between breaking and background systematically using Ab.
Microbreaking Kb – at inception patch always inside Ab
Background Knb– patch always outside Ab


The High Wind speed Gas Exchange Study (HiWinGS)

Where: Labrador Sea — Nuuk to WHOI

—_
o

When: Oct 9 — Nov 14 2013

LDEO Measurements: Ship-Based Visible Imaging
20 Hz frame rate (Continuous during daylight)
1000 x 1000 pixels ~100 m x 100 m
IMU mounted to each camera allows for motion correction

Additional Measurements:
Wave field: Riegl Altimeter (continuous till station 4)

Wave Rider buoy (on station)
Meteorological and chemical fluxes (CO,, DMS...)
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Wave Field Data

Wave Rider Buoy
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Whitecap coverage - image analysis now
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Bubble-Mediated Gas Transfer

Asher and Wanninkhof [1998] Direct Whitecapping

K = (47u 10 +We (1.5><105 — 47U, ))Sc‘ll 2 +We (—37 +1O,440a_0'418C_O'24j
H 04
Wind-Generated Turbulence _ H . H
Injection Non-Equilibrating Bubbles

Whitecap-Generated Turbulence N _
Solubility-Dependent Bubble-Mediated Exchange

Parameterization based on Overall parameterization based on Memery and Merlivat [1985].
extensive laboratory Non-equilibrating bubbles functional form based on Keeling[ 1993].
measurements _
Woolf [2005] Sea State Dependent Wave Breaking
K =K, +K,g
—4 /2 -5 = /.
K =1.57x10™u,(600/Sc)"* +2x10°R,,, Ry = wd/v.

Based on the Wave Reynolds # argument of Zhao and Toba [2003]

Others based on the Breaking Wave Parameter of Zhao and Toba [2001], Toba and Koga [1986]

2 -1 3
Ry =, /V(up Ry = (gv) u; 3. B = ghmup Wave Age based
on wind stress



CO, - Wind speed dependence
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CO, — Wave related Reynolds numbers

300

Measured gas transfer velocities of CO,

Reynolds # collapses all 4 data 250 t

sets!
200 F

HIWINnGS
Knorr11
SO GasEx
GasEX-98

150

100 ¢

Kego [CM hr 1]

50

w VW

T

Wave-wind Reynolds # 0 oot

50 F

-100

-~ Woolf [2005]

10°

Brumer et al., (2017). Wave-related Reynolds number parameterizations of CO, and DMS transfer velocities. GRL.

10©
R

Hw

107













LADAS Catamaran







Turbulence Mechanisms in Polar Systems

3. Short period gravity waves
and interactions with ice floes

1. Shear in
the ice-ocean
boundary layer

2. Buoyant convection/stratification



UAS Activities at Lamont-Doherty Earth Observatory of
Columbia University




MIZOPEX 2013

Bt e
Overview of the UAF-Operated InSitu
Data SI0, NOAA, US. Navy,
US Dept o Stats Googras ScanEagle UAS

65°40'31.45" N 146°55'37.09"W e Wingspan: 10.2 ft, Length: 4.5 ft

% Weight: 29 Ibs (empty), 44 |bs (max takeoff
wt.)
Gas engine (1.9 hp), rear propeller,
onboard generator for electric power

48 knot airspeed (cruise)

Catapult launch, wing tip capture via cable
Autonomous flight control with GCS
control while in line of sight radio range
(approx 40 km)

Iridium satcom for over the horizon

operations

Endurance: 20+ hours

Ceiling: 19,500 ft.

Payload: up to ~6 Ibs.

Has received numerous FAA Certificates of
Authorization, thousands of flight hours
achieved.


Apresentador
Notas de apresentação
	- Amount and distribution of heat in the ocean mixed layer
	- Relationships between atmospheric conditions and solar heating
	- Sea ice characteristics and relationships to melt rates and change
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Notas de apresentação
	- Amount and distribution of heat in the ocean mixed layer
	- Relationships between atmospheric conditions and solar heating
	- Sea ice characteristics and relationships to melt rates and change






MIZOPEX 2013
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Notas de apresentação
	- Amount and distribution of heat in the ocean mixed layer
	- Relationships between atmospheric conditions and solar heating
	- Sea ice characteristics and relationships to melt rates and change






MIZOPEX: Turbulence Mechanisms in Polar Systems

Measurements of Visible and Infrared Imagery from LDEO Payload on Scan Eagle
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Apresentador
Notas de apresentação
The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure.  Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water.  The upstream side of the ice floe shows the coldest skin SST, and downstream the skin SST is mixed within the turbulent wake over 10s of meters. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. 


Average Ice Fraction =0.052 + 0.084

| SSTSD=0.21°C

Flight 1
2 August 2013

Average Ice Fraction = 0.002 + 0.019

| SSTSD=048°C

Flight2 |l | s Flight3
4 August 2013 | 6August 2013
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Satellite View of MIZOPEX Transition

Measurements of Infrared Imagery from LDEO Payload on Scan Eagle
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
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Dropsonde [ Microbuoy (DDmD) Payload
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Dropsonde / Microbuoy (DDmD) Payload
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Dropsonde / Microbuoy (DDmD) Payload
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Hyperspectral Payload Development
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.



UAS Payloads

Table 1: Implemented science payloads and applications

Payload

VIS-TIR*

Hi-TIR*

HYP-VNIR*

HYP-NIR*

RAD*

DDpD*

*also included upward- and downward-looking pyrometers (8-14 um) to measure narrow field-of-view (FOV) skin SST and

Sensing technologies

High-resolution broadband visible (400-700 nm) imager, uncooled microbolometer (8-14 um) imager
sensitive to 0.05°C for skin sea surface temperature (SST) mapping, whitecapping, and other upper ocean
processes.

Cooled infrared (7.7 — 9.5 um) imager sensitive to 0.02°C for skin SST mapping, whitecapping, and other
upper ocean processes.

Hyperspectral visible (300-1000 nm) imaging spectrometer with better than 3 nm spectral resolution for
spectral radiance measurements of the upper-ocean to determine ocean color and biogeochemical
mapping. Upward-looking narrow FOV spectrometer provides measurements for estimates of spectral
albedo of varying surfaces including ocean.

Hyperspectral near-infrared (900-1700 nm) imaging spectrometer with better than 3 nm spectral resolution |
for spectral radiance measurements of the near-surface ocean to determine ocean color and

biogeochemical mapping. '
LiDAR for wave height and surface roughness; fast response 3D wind speed and direction (100 Hz), fast
response temperature (50 Hz), fast response relative humidity (100 Hz) for estimating momentum, latent
heat and sensible heat turbulent fluxes.

Upward- and downward-looking pryanometer (broadband solar 285-3000 nm) and pyrgeometer
(broadband longwave; 4.5-40 um) to measure full hemispheric irradiance to understand the surface energy .

budget and map albedo of varying surfaces including the ocean. High-resolution broadband visible (400- . R

700 nm) imaging is used to map whitecapping and other upper ocean processes.

Drone-Deployed Micro-Drifters with launcher for in-flight ejection of up to four micro-dropsonde packages.

The DDuD measures temperature, pressure, and relative humidity as it descends through the atmosphere.

Once it lands on the ocean’s surface, it deploys a string of sensors that measures temperature and salinity

of the upper 2-3 meters of the ocean at fifteen minute intervals for up to two weeks as a buoy. The ocean |
sensors on the DDuD collect and store data and then transmit the data back to the UAS on subsequent

flights from up to 10 miles away.

ice-surface temperature.

Sea Ice Radar Development — Built on experience from IlcePOD at LDEO
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
(Top) True color image captured by the Landsat satellite on Novermber 17, 2014, of the coast of Northwestern Australia, east of Point Samson.   Trichodesmium is known to bloom extensively in this region [Creagh, 1985] and the slicks are presumably due to accumulation of this organism in the surface microlayer.  The slicks are dense enough to accumulate along the wake of a ship (north/south lines seen to top left of true color image.   (Bottom Left) 30 m resolution chlorophyll map obtained from the Landsat data.  The high albedo from the dense surface slicks trigger the cloud mask (white).  The wake of the ship can be seen in this image to the top left.  (Bottom Right) MODIS Aqua map of chlorophyll for the same day.  The 1 km resolution image does not show any “clouds” since the fine structure of the surface slicks are averaged out with the intervening waters and the albedo is not high enough to trigger the cloud mask.



Current Directions — R/V Falkor
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.



Future Directions — UAS from Ships



Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.



Future Directions — UAS from Ships
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.



urrent Directions — UAS from Ships



Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
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UAS Payload Development
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
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Solar/IR Radiation Data

Overview
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Hyperspectral Payload Development
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
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Solar/IR Radiation Data

Overview
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Current Directions — R/V Falkor

Climatology of 10m Wind Speed Over Ice-Free Oceans
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
(Top) True color image captured by the Landsat satellite on Novermber 17, 2014, of the coast of Northwestern Australia, east of Point Samson.   Trichodesmium is known to bloom extensively in this region [Creagh, 1985] and the slicks are presumably due to accumulation of this organism in the surface microlayer.  The slicks are dense enough to accumulate along the wake of a ship (north/south lines seen to top left of true color image.   (Bottom Left) 30 m resolution chlorophyll map obtained from the Landsat data.  The high albedo from the dense surface slicks trigger the cloud mask (white).  The wake of the ship can be seen in this image to the top left.  (Bottom Right) MODIS Aqua map of chlorophyll for the same day.  The 1 km resolution image does not show any “clouds” since the fine structure of the surface slicks are averaged out with the intervening waters and the albedo is not high enough to trigger the cloud mask.



Current Directions — R/V Falkor

(Top) True color image captured by the Landsat satellite on November 17, 2014, of the coast of Northwestern Australia, east of Point Samson. (Bottom
Left) 30 m resolution chlorophyll map obtained from the Landsat data. The high albedo from the dense surface slicks trigger the cloud mask (white).
(Bottom Right) MODIS Aqua map of chlorophyll for the same day.


Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
(Top) True color image captured by the Landsat satellite on Novermber 17, 2014, of the coast of Northwestern Australia, east of Point Samson.   Trichodesmium is known to bloom extensively in this region [Creagh, 1985] and the slicks are presumably due to accumulation of this organism in the surface microlayer.  The slicks are dense enough to accumulate along the wake of a ship (north/south lines seen to top left of true color image.   (Bottom Left) 30 m resolution chlorophyll map obtained from the Landsat data.  The high albedo from the dense surface slicks trigger the cloud mask (white).  The wake of the ship can be seen in this image to the top left.  (Bottom Right) MODIS Aqua map of chlorophyll for the same day.  The 1 km resolution image does not show any “clouds” since the fine structure of the surface slicks are averaged out with the intervening waters and the albedo is not high enough to trigger the cloud mask.



Current Directions — R/V Falkor
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
(Top) True color image captured by the Landsat satellite on Novermber 17, 2014, of the coast of Northwestern Australia, east of Point Samson.   Trichodesmium is known to bloom extensively in this region [Creagh, 1985] and the slicks are presumably due to accumulation of this organism in the surface microlayer.  The slicks are dense enough to accumulate along the wake of a ship (north/south lines seen to top left of true color image.   (Bottom Left) 30 m resolution chlorophyll map obtained from the Landsat data.  The high albedo from the dense surface slicks trigger the cloud mask (white).  The wake of the ship can be seen in this image to the top left.  (Bottom Right) MODIS Aqua map of chlorophyll for the same day.  The 1 km resolution image does not show any “clouds” since the fine structure of the surface slicks are averaged out with the intervening waters and the albedo is not high enough to trigger the cloud mask.



Trichodesmium Current Directions — R/V Falkor
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
(Top) True color image captured by the Landsat satellite on Novermber 17, 2014, of the coast of Northwestern Australia, east of Point Samson.   Trichodesmium is known to bloom extensively in this region [Creagh, 1985] and the slicks are presumably due to accumulation of this organism in the surface microlayer.  The slicks are dense enough to accumulate along the wake of a ship (north/south lines seen to top left of true color image.   (Bottom Left) 30 m resolution chlorophyll map obtained from the Landsat data.  The high albedo from the dense surface slicks trigger the cloud mask (white).  The wake of the ship can be seen in this image to the top left.  (Bottom Right) MODIS Aqua map of chlorophyll for the same day.  The 1 km resolution image does not show any “clouds” since the fine structure of the surface slicks are averaged out with the intervening waters and the albedo is not high enough to trigger the cloud mask.
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Apresentador
Notas de apresentação
Investigate the spatial and temporal variability of ocean surface skin temperature under low wind conditions.
Spatial variability influences the small-scale distribution of air-sea surface fluxes.
Spatial variability shows a spectrum of scales that runs through various forcing regimes.
Regional down to meter scale variability across a range of conditions.
Revealing processes driving air-sea fluxes.
Remote sensing gives insight into the mixed layer dynamics.
(Top) True color image captured by the Landsat satellite on Novermber 17, 2014, of the coast of Northwestern Australia, east of Point Samson.   Trichodesmium is known to bloom extensively in this region [Creagh, 1985] and the slicks are presumably due to accumulation of this organism in the surface microlayer.  The slicks are dense enough to accumulate along the wake of a ship (north/south lines seen to top left of true color image.   (Bottom Left) 30 m resolution chlorophyll map obtained from the Landsat data.  The high albedo from the dense surface slicks trigger the cloud mask (white).  The wake of the ship can be seen in this image to the top left.  (Bottom Right) MODIS Aqua map of chlorophyll for the same day.  The 1 km resolution image does not show any “clouds” since the fine structure of the surface slicks are averaged out with the intervening waters and the albedo is not high enough to trigger the cloud mask.
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Surface Ellipsoid Height from LIDAR Over Sea Ice - IDW Grid
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Consequences of Sea Ice Change
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Project Objectives

Improve understanding of the mechanisms,
impacts, and implications of sea ice retreat in the
Arctic for the global science community and local
stakeholders

Develop partnerships between scientists and local
residents to increase the capacity of local
communities to address their research needs

Science

Community

Document the progress of the project as a

potential model for future community-based
collaborative science endeavors in the Arctic

Legacy
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Project Timeline
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Work PIan'

Year 1
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Apresentador
Notas de apresentação
Publishing, indigenous integration, benefits to local community, science interests/backgound remote sensing, interest in oceanographic conservation


UAS Payloads

Table 1: Implemented science payloads and applications

Payload

VIS-TIR*

Hi-TIR*

HYP-VNIR*

HYP-NIR*

RAD*

DDpD*

*also included upward- and downward-looking pyrometers (8-14 um) to measure narrow field-of-view (FOV) skin SST and

Sensing technologies

High-resolution broadband visible (400-700 nm) imager, uncooled microbolometer (8-14 um) imager
sensitive to 0.05°C for skin sea surface temperature (SST) mapping, whitecapping, and other upper ocean
processes.

Cooled infrared (7.7 — 9.5 um) imager sensitive to 0.02°C for skin SST mapping, whitecapping, and other
upper ocean processes.

Hyperspectral visible (300-1000 nm) imaging spectrometer with better than 3 nm spectral resolution for
spectral radiance measurements of the upper-ocean to determine ocean color and biogeochemical
mapping. Upward-looking narrow FOV spectrometer provides measurements for estimates of spectral
albedo of varying surfaces including ocean.

Hyperspectral near-infrared (900-1700 nm) imaging spectrometer with better than 3 nm spectral resolution |
for spectral radiance measurements of the near-surface ocean to determine ocean color and

biogeochemical mapping. '
LiDAR for wave height and surface roughness; fast response 3D wind speed and direction (100 Hz), fast
response temperature (50 Hz), fast response relative humidity (100 Hz) for estimating momentum, latent
heat and sensible heat turbulent fluxes.

Upward- and downward-looking pryanometer (broadband solar 285-3000 nm) and pyrgeometer
(broadband longwave; 4.5-40 um) to measure full hemispheric irradiance to understand the surface energy .

budget and map albedo of varying surfaces including the ocean. High-resolution broadband visible (400- . R

700 nm) imaging is used to map whitecapping and other upper ocean processes.

Drone-Deployed Micro-Drifters with launcher for in-flight ejection of up to four micro-dropsonde packages.

The DDuD measures temperature, pressure, and relative humidity as it descends through the atmosphere.

Once it lands on the ocean’s surface, it deploys a string of sensors that measures temperature and salinity

of the upper 2-3 meters of the ocean at fifteen minute intervals for up to two weeks as a buoy. The ocean |
sensors on the DDuD collect and store data and then transmit the data back to the UAS on subsequent

flights from up to 10 miles away.

ice-surface temperature.

Sea Ice Radar Development — Built on experience from IlcePOD at LDEO
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Indigenous knowledge

Indlgenous knowledge is “a systematic way.of: -~s~ ohenemena
across biological, physical, cultural and spiritua stemsa dés insig
based on evidence acquired through direct and long-term experiences an‘\_ N

extensive and multigenerational observations, lessons and skllls.-\t has
developed over millennia and is still developing in a living process, including
knowledge acquired today and in the future, and it is passed on from generation

to generation” (ICC Alaska 2015).




Kotzebue Temperatures

UAS: Maximum Temperature 100.4F and Minimum Temperature -4F

Temperature

Feb |26
38°F

Jan Feb Mar Apr May Jun Jul Aug Sep ©Cct Nov Dec

The daily low (blue) and high (red) temperature during 2013 with the area between them shaded gray a
superimposed over the ponding ave (thick lines), and with percentile bands (inner band from
25th to 75th percentile, outer band from n 10th to 90h perceitile). The bar at the top of the graph is red where
both the daily high and low are above average, blue where they are both below average

mhtm‘.’.»e..




Mooring Location
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Mooring

AWAC: water column velocity profile;

524 Ice

SBE HydroCAT-EP
CT.DO, pH, Turbidit

Chl fluorescence

Popup acoustic release
and recovery line

Ground line: Length 1.5 x depth minimum

Anchor, 20 kg

Notes:

AWAC can be gimbal mounted. A ballast weight would have to be added beneath the AWAC to provide righting moment
Anchor can be recovered with the popup elin

Ground line is ideally plastic-covered steel mooring wired, 3/16", in case popup buoy fails and the ground line must be grappled.
Assumes water depth not tc ed 20m

Anchor weight is approximate pending final design
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White House Announcement

THE WHITE HOUSE
Office of the Press Secretary
FOR IMMEDIATE RELEASE
December 9, 2016

FACT SHEET: White House Announces Actions to Protect Natural and Cultural
Resources in Alaskan Arctic Ocean

Since taking office, President Obama has worked to protect the Arctic’s natural and
cultural resources and the communities that rely upon them through the use of science-
based decision making, enhanced coordination of Federal Arctic management, efforts to
2 # combat illegal fishing, and revitalization of the process for establishing new marine
| sanctuaries. Building on this effort, today, President Obama is announcing new steps to
- |enhance the resilience of the Alaskan Arctic environment and the sustainability of R
| Alaskan native communities with the creation of the Northern Bering Sea Climate {. -
Resilience Area. —
. Tr::|daj,r, the Gordon and Betty Moore Foundation is announcing a $3.7 million
In addition to today’s protections, the Obama Adminis grant to support research that couples state-of-the-art geophysical observations
approsimately $30 million in philanthropic commitmer from unmanned aerial systems with a community-engaged research approach to
Alaska and Canada: These projects include investorent bndge scientific and 11.1dlg:?nous understa:t.ldmg of seaice c%la_ﬂge.* in ﬂ}e Alaskan
elated to shinnine. ecosvatem science. communiby an Arctic. Led by the University of Alaska Fairbanks, Columbia University, and

Kotzebue residents, the project will research changing patterns of Arctic ice and
other physical characteristics in Kotzebue Sound and the ChukchiSea, using a
combination of traditional knowledge and sensing technologies in modules
carried by drones. From the beginning of the work - including development of
the research design - the project will involve local experts who have sea ice
experience and other environmental knowledge.
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