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Summary
* Examples

Go-to-Formation Maneuver
Range-Based Vehicle Positioning and Target Localization

* Problem Formulation
* Optimal Trajectory generation Methods

* Polynomial-Based Methods
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Go-to-Formation Maneuver
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Initial Positions

Objectives:
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Final Positions
(Target Formation)

* Driving the vehicles from the initial positions to the target formation
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* Ensuring simultaneous arrival at final positions with desired speed and heading
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Range-Based Vehicle Positioning and Target Localization

Objectives:
* Obtaining a sequence of range measurements to fixed or moving beacons with known positions

* Maximizing the range-based information available for an accurate estimation of the vehicle position
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Trajectory Generation Problem for N vehicles

min J(-)
plil
i=1,..,N
subject to boundary conditions,
vehicle dynamic constraints,
temporal or spatial deconfliction constraints,

obstacle avoidance constraints,

mission specific constraints,

« Pliljs the it" vehicle trajectory.

* J() is the given cost function.
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Problem Constraints

The trajectories should satisfy the constraints imposed by the vehicle dynamics,

X1 [vcos(yP)l 10 O N
y vsin)| [0 Of i
k=|v|=| o "[+[1 of[.] ,
Y r 0 0 |
7 0 0 1 |

» upper/lower bounds on state variables,

Vmin < V(8) = Vinax Ymin <Y < Yinax Tmin < 7(8) < Tnax

» upper/lower bounds on input variables,

Wiinin Su(t) = Ut max U2 min = uZ(t) = U2 max

* Dynamic constraints are considered either explicitly or in terms of geometrical properties of the path.
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Problem Constraints

The trajectories should be collision-free,

R Final Positions Final Positions

(Target Formation) (Target Formation)

Initial Positions Initial Positions

Spatial Deconfliction. Temporal Deconfliction.

(x[i](t) _ x[j](t))z s (y[i](t) — y[j](t))2 _

@n)? @n)? 120

Ccol(p[i] ®, p[j] (t)) =
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Objective Function

The trajectories should minimize (or maximize) a cost function.

- Minimizing travel time or energy consumption

- Maximizing the information available for estimation

Using the Fisher Information Matrix to quantify the information content of measurements

FIM Basics

For the random variable 8 with probability distribution Py,

FIMy € E [(WA@) (VeAe)T]

where Ag is the log likelihood function

def
Ag = lnpg(X)
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Trajectory Generation Problem as an OCP

min f Z L; (x¥ (), uld(0)) dr + 2 E;(x(tf))

s.t. x[‘] (t) = fi (x[l] ultl)
x[1(0) = x!
xlt] (tf) = x}[f]
Ceot (x“] (t) 1l (t)) >0

* The constraints should be satisfied for all t € [0, tf] withi,j € {1, ..., N, }.
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Optimal Trajectory Generation Methods and Tools

* PRojection Operator based Newton method for Trajectory Optimization (PRONTO)

* Direct Optimal Control Methods,

- Collocation (Pseudo-spectral methods)
DIDO

- Muultiple Shooting
NLP solvers (FORCES Pro, ...)
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Simulation Results
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* Temporally deconflicted trajectories for 4 vehicles minimizing time and energy

* Problem solved in 6067 milliseconds using FORCES Pro interior-point solver
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Simulation Results
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* Spatially deconflicted trajectories for 7 vehicles with constant speed

* Problem solved in 39 seconds on a desktop computer with 2.60 GHz i7-4510U CPU
and 6.00 GB RAM
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Simulation Results
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* Same problem with variable speed bounded between 0.2m/s and 0.6m/s
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Simulation Results
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« Maximizing the overall FIM for two vehicles one beacon problem  det @FIM%L 0, | = H det(FIM (6,))

. ol ® el =3l
e Problem solved in 5046 milliseconds = =
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Polynomial-based Path Planning
* Using polynomial trajectories to describe independent evolution of flat outputs.
* In flat systems, all states and inputs can be expressed in terms of flat output and its derivatives.

* Exploiting the mathematical and geometric properties of particular classes of curves,

- B-splines curves
n

r(¢) = S m B0,

k=0

- Bézier curves
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Properties of Bezier Curve

®

Bezier Curve
Control Points
Convex Hull

minimum distance of two planar quintic Bezier curves

* The curve is inside the convex hull defined by the control points.

* The minimum distance can be computed efficiently using De Casteljau’s algorithm.
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Polynomial-based Path Planning

* Spatial path

Polynomial in dimensionless parameter 7,

Pi(’[) — lpll(f)] [Zk opz kT ] TE [O,T}]

P; (1) k= op1kT

* Timing law

Non-negative function of time,
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Problem Constraints

* Expressing constraints in terms of spatial path and timing law

Vhin < LTHE)) ON(E) < Viyax

Sil’l(l/)min) < sin(l/J(T)) < Sin(lpmax)

Dynamic Constraints —)
y a(t) = % = 0N’ @Il + 0%(t)o’ (7)
- (IP'@IIPY (1) — o’ (T)P5(1))O(t)
v = THOIRG
* where
; 2(0) o(t "(1).P"(z ; 1
(@) =pay  ew=20LOLO i - o)

* Temporal and spatial deconfliction constraints,

1Pi(c) = PIEH|* 2 dy; for i,j €{L,..,N,}and v ©i,7J € [0,7;]

IPi) = PI@®)||* = dij for i,j €(1,..,N,}and V¢ € [0, ]
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Simulation Results
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* Temporally de-conflicted trajectories for two vehicles using quantic Bezier Curves

* Problem solved in 2032 milliseconds
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Thank you!
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