Inflight Wind Velocity and Aerodynamic Coefficient Estimation for fixed Wing UAVs and Applications to Icing Detection

Andreas Wenz, Tor Arne Johansen
Outline

I. Inflight Wind Velocity and Aerodynamic Coefficient Estimation
 1. Motivation
 2. Modelling
 3. Estimation Setup
 4. Moving Horizon Estimation

II. Flight Tests

III. Conclusions

IV. Drag Estimation
Motivation

Why do we need Wind velocity estimation?

- Allows Angle of Attack, Airspeed and Sideslip calculation
- Useful for path planning and following as well as landing

Problems:

- Small UAVs have no sensors to measure angle of attack
- Aerodynamic coefficients often unknown

Wind Velocity Estimation

- Kinematic Model (Pitot-static Tube)
 - non parametric
- Aerodynamic Model (Accelerometer)
 - parametric
Kinematic Model

- Wind triangle

\[\mathbf{v}_r^b = \mathbf{v}^b - R_n^b \mathbf{v}_w^n \]

- Angle of Attack

\[\alpha = \tan^{-1} \left(\frac{w_r^b}{u_r^b} \right) \]

- Sideslip angle

\[\beta = \sin^{-1} \left(\frac{v_r^b}{\| \mathbf{v}_r \|} \right) \]

- Airspeed

\[V_a = \| \mathbf{v}_r \| \]
Kinematic Model

- Pitot-static tube measures \tilde{V}_a if tube wide enough and airspeed small

$$\tilde{V}_a = \frac{V_a}{\gamma} + \eta$$

- The relative airspeed vector:

$$\mathbf{v}_r^b = V_a \begin{bmatrix} \cos \alpha \cos \beta \\ \sin \beta \\ \sin \alpha \cos \beta \end{bmatrix}$$

if $\cos(\beta) \approx 1$

$$\begin{bmatrix} u^b \\ w^b \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{R}_n^b \mathbf{v}_w^n + V_a \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$$
Aerodynamic Model

- General model for specific force in z-direction

\[f_z = \frac{\rho S}{2m} V_a^2 (-C_L(\alpha) \cos(\alpha) - C_D(\alpha) \sin(\alpha)) \]

- Coefficients

\[
C_L(\alpha) = C_{L,0} + \alpha C_{L,\alpha} \\
C_D(\alpha) = C_{D,0} + \alpha C_{D,\alpha}
\]

- Since \(\alpha \) is small in normal flying conditions:

\[
f_z = -KV_a^2 (C_{L,0} + \alpha C_{L,\alpha})
\]
Wind Model

- Frequency separation in steady and turbulent wind velocity components

\[\mathbf{v}_{w,k}^n = \mathbf{v}_{s,k}^n + \mathbf{v}_{t,k}^n \]

- Steady wind velocity model

\[\Delta \mathbf{v}_{s,k}^n \approx 0 \]

- Turbulent wind velocity model

Dryden model [5]:

\[\Delta \mathbf{v}_{t,k}^n = -\Delta T \mathbf{V}_{a,k} \left(\begin{array}{c} \frac{u_t^n}{L_u} \\ \frac{v_t^n}{L_v} \\ \frac{w_t^n}{L_w} \end{array} \right)_k + \left(\begin{array}{c} \sigma_u \sqrt{2 \Delta T \frac{V_a}{L_u} \eta_u} \\ \sigma_v \sqrt{2 \Delta T \frac{V_a}{L_v} \eta_v} \\ \sigma_w \sqrt{2 \Delta T \frac{V_a}{L_w} \eta_w} \end{array} \right)_k \]
State-Space Model

- States
 \[x = [u^n_t \ v^n_t \ w^n_t]^T \]

- Parameters
 \[p = [u^n_s \ v^n_s \ w^n_s \ K C_{L_0} \ K C_{L_\alpha} \ \gamma]^T \]

- Inputs
 \[\tilde{u} = [\tilde{u}^b \ \tilde{v}^b \ \tilde{w}^b \ \mathbf{R}_n^b \ \mathbf{h}]^T \]

- Outputs
 \[z = [\tilde{f}_z \ \tilde{V}_a^m \ \tilde{u}^b \ \tilde{w}^b] \]
State-Space Model

- State transition function

\[f(x, u, p) = -\bar{V}\alpha \left(\begin{array}{c} \frac{u_t}{L_u} \\ \frac{v_t}{L_v} \\ \frac{w_t}{L_w} \end{array} \right) \]

- Noise transition function

\[w(x_k, u_k, \eta_{v_t, k}, p) = \left(\begin{array}{c} \sigma_u \sqrt{2\Delta T \frac{\bar{V}\alpha}{L_u}} \eta_{u_t} \\ \sigma_v \sqrt{2\Delta T \frac{\bar{V}\alpha}{L_v}} \eta_{v_t} \\ \sigma_w \sqrt{2\Delta T \frac{\bar{V}\alpha}{L_w}} \eta_{w_t} \end{array} \right) \]

- Measurement function

\[h(x_k, u_k, p) = \left[\begin{array}{c} -KV\alpha^2 (C_{L_0} + C_{L\alpha} \alpha) \\ V\alpha / \gamma \\ d_1 R^n b (v^n_s + v^n_t) + V\alpha \cos(\alpha) \\ d_3 R^n b (v^n_s + v^n_t) + V\alpha \sin(\alpha) \end{array} \right] \]
Estimation Setup

- **Sensors:**
 - GNSS
 - IMU
 - Pitot-static tube
- **AHRS** for orientation matrix estimation
- **TMO** for ground velocity estimation
- **Wind velocity and coefficient estimator:**
 - Moving Horizon Estimator
 - Direct Collocation Method
 - UKF for arrival cost approximation
- Implementation in Matlab + Casadi

Wind velocity

+ Aerodynamic parameter estimation

\[C_{L,0}, C_{L,\alpha} \]

\[v_r^b, v_w^n \]

\[R_n^b, \bar{f} \]

\[\bar{v}^b \]

\[\bar{u}_r^m \]
Moving Horizon Estimation

- Objective Function

\[
\min_{x_{k-L}, \ldots, x_k, w_{k-L}, \ldots, w_k, \theta_{k-L}, 0, \ldots, \theta_{k,d}} \left(\sum_{p} \frac{1}{\hat{P}_{k-L}} \right)^{-1} \left(x_{k-L} - \hat{x}_{k-L} \right)^2 + \sum_{j=k-L}^{k} \left\| y_j - h(x_j, u_j, p) \right\|^2_{R(q)-1} + \sum_{j=k-L}^{k-1} \left\| \eta_j \right\|^2_{W^{-1}}
\]

\[
\eta_j = \begin{bmatrix} \eta_{v,j} & \eta_{u,j} & \eta_{z,j} \end{bmatrix}
\]

- Arrival Cost:
 - Summarises the information before the current window
 - Tuning factor \(c \)
 - Approximation necessary:

 Unscented Kalman Filter:
 - Avoids linearisation
 - Allows representation of input noise
 - Easy to implement
Flight Tests
Flight Profile

Position North

Position East

Andreas Wenz - MHE for Wind Vel. and Aerodyn. Coeff. Estimation
$RMSE_{\text{pixhawk}} = 0.96^\circ$, $RMSE_{\text{navstack}} = 0.81^\circ$
\[\text{RMSE}_{\text{pixhawk}} = 4.25^\circ, \text{RMSE}_{\text{navstack}} = 3.85^\circ \]
Wind Estimation Error

![Wind Estimation Error Graphs](image)

- **x-direction**
 - Blue: Estimation Error Navstack
 - Red: Estimation Error Pixhawk

- **y-direction**
 - Blue: Estimation Error Navstack
 - Red: Estimation Error Pixhawk
Wind Estimation Error

z-direction
Conclusions

- MHE provides accurate estimation of AoA, Coefficients and Wind velocities
- Attitude changes during take off sufficient for persistence of excitation
- No prior knowledge about the UAV needed
- Realtime capable (0.072 s/sample < 0.2 s)

Future / Current Work:

- Wind adaptive path planning/ following
- Icing detection
Icing Detection
Motivation

Inflight icing is a global phenomenon

Effects of Inflight Icing on UAVs

- Control Surfaces
- Engine
- Pitot-static Tube
- Wings
Icing Detection Architecture

- T/H Sensor
- Environment
- Wind, Ice
- Trigger
- Autopilot
- Control
- Measurements
- Aero. Coeff. Estimation
- T/H Sensor
- Trigger
- Measurements
Effects of Airfoil Icing

- Lower stall angle
- Lower maximal lift force
- Flatter rise in lift coefficient

Effects on Lift Coefficient:

\[\text{Re} = 2 \times 10^5 \]
Drag coefficients in Icing
Future Work: Drag Estimation

Benefits
• More accurate icing detection
• Allows pitot-tube and engine fault detection

Challenges
• More parameters to estimate => Lack of excitation source of errors
• Thrust estimation needed => RPM sensor or RPM estimation
(1) Estimation of Wind Velocities and Aerodynamic Coefficients for UAVs using standard Autopilot Sensors and a Moving Horizon Estimator, Wenz et al., ICUAS 2017

(2) Combining model-free and model-based Angle of Attack estimation for small fixed-wing UAVs using a standard sensor suite, Wenz et al., ICUAS 2016, Arlington

(3) On estimation of wind velocity, angle-of-attack and sideslip angle of small UAVs using standard sensors, Johansen et al., ICUAS 2015, Denver

(6) Small Unmanned Aircraft: Theory and Practice, Beard and McLain 2012

(7) MIL-STD-1797A: Flying Qualities of Piloted Aircraft

Questions?