Obstacle avoidance based on Reach Sets
Short story how to keep your UAV safe
What I am going to Talk about

Easy introduction to Obstacle Avoidance
- Follow Lojzo on his journey to Pub
- Obstacle Avoidance challenges related to Everyday situation

Obstacle avoidance framework
- Brief introduction to obstacle avoidance framework
- What are components how they work together?

Some results
- Framework performance comparison with other methods
- Intruder avoidance (Reactive level)
- Static obstacle avoidance (Reactive level)

Actual challenges
- Weather incorporation into obstacle avoidance, Rules of the Air
Global research topic

Obstacle avoidance for UAV/UAS/RPAS systems:

Given:
- partially known world, changing weather, information sources
- mission plan,
- small UAV equipped with a LiDAR and ADS-B sensors

- Safe and robust approach to real-time reactive obstacle avoidance
 - small computational footprint
 - guarantees safe path
 - guarantees turn return checkpoint

- Main applications:
 - terrain avoidance for low altitude flights
 - avoidance of intruders
Easy introduction to Obstacle Avoidance
How to get to a pub?
No problem, I know a map of my surroundings

[1] Path planning problem:
1. Get map of surrounding area
2. Find shortest path between waypoints
 Use of safe routes Optional

Path to PUB
Forget your map, know PUB location

You are in front of your Home

You can sense some of your surroundings (Field of Vision)

You know where is PUB (GPS)

[2] Evolving world:
1. You are obtaining more knowledge as you move
2. You need to make Decisions when you reach your FOV boundary
[2] Evolving world:
Decision Point – point of safe return (I can go home), where I do new sensor scan and decide follow up trajectory

You know where is PUB (GPS)
You will probably apply some sort of COST FUNCTION in your decision

Passed trajectory
Decision point
Way 1
Way 2
Way 3

I get to the first intersection, now what?
Look around, get know to your surroundings

This patch can get me closer to PUB, (Other sightings NOT so useful)

You know where is PUB (GPS)

[2] **Evolving world:**
Known World – Pieces of observations which are useful for the mission goal, you can define own set management, based on performance requirements
Walk a little more, get closer to PUB

[2] Evolving world:
Rinse and repeat the previous strategy

You know where is PUB (GPS)

Passed trajectory
Decision point
Way 1
Way 2
Way 3
Now I can see the PUB

[2] Evolving world:
Now just walk down to the street and get to a PUB

I can see free way to PUB
(Other sightings are scrapped)

You know where
is PUB
(GPS)
I can finally enjoy the Cola with my friends

[2] Evolving world:
1. Optimal paths in given FOVs
2. Evolving world cause suboptimal paths
(Note that path is different)

You know where is PUB (GPS)
You are NOT alone on the streets!

[3] Adversarial:
While you are moving to PUB you need to be cautious about: **Cars and Other people**
Because hitting them can cause damage to you or other people or property

[3] Adversarial:
You need to implement: **Reactive obstacle avoidance**
You can assume:
1. Position of Adversary
2. Its Velocity vector
3. Own position and velocity
Multiple source of information – Data Fusion

[4] Data fusion:
You are well prepared, you ask locals, you got map, you can see a world, but to make decision you need to process that information: **Data Fusion**

Is there to help

[4] Data Fusion:
You need to implement:

Decisions under uncertainty

1. Determine what is truth
2. Consider all information
3. Rank your sources worth
Gopniks & Babushkas – Static restriction areas

[5] Static restrictions:
Well there are inhabited areas which you like to avoid, like Gopnik Squat Area where you can be beaten or Local Surveillance system which will tell your grand mother

[5] Static restrictions:
1. Breakable – You can tell your grand mother you were on your way to local church
2. Unbreakable - Gopniks will beat you anyway
Try to avoid all restricted areas
Try to avoid static restrictions areas!

[5] Static restrictions:
Try to avoid them (KW evolution omitted)
1. Gopnik Squat Area – unbreakable, must avoid
2. Babushkas – breakable, but you have no excuse

Gopnik Squat Area
Babushka Vigilante Groups

Try to avoid static restrictions areas!
How about weather?

[6] Weather:
Slav winter cold harsh mistress,
If you don’t treat her well she will strike with sickness for 7 days

1. Weather can impact energy consumption
2. Weather is changing with time
3. Decision making with additional layer
4. Impact on your eyes and ears
Rather get caught, than catching cold …

[6] Weather:
Try to avoid unfavorable weather conditions:
1. Heatwave at EAST (changing with time)
2. Snowstorm at WEST (changing with time)

Snowstorm

I will explain somehow…

Gopnik Squat Area

Babushka Vigilante Groups

Heatwave
Keep good manners!

[7] Rules:
Keep rules while walking, keep yourself on right side of the road and look after other attendants ...

[7] Rules:
1. You stick to written and unwritten rules during your commuting to PUB
2. Rules are necessary for successful integration into traffic, society, air space
After going all this challenges, you can finally enjoy that nice beer cola with friends...

UAV wants To chat

Look at your phone
A little chat with UAV…

Well Lojzo that is nice story, but how is it going to help me to avoid obstacles and execute mission?

You can use same principles of preemptive and reactive obstacle avoidance in your case

Slavic magic and Vodka?

No, we can use Mathematics (Slavic magic) and my implementation skills (Coffee) to make you safe

Like what?

Some kind of elaborate Framework covering:
Obstacle Avoidance Framework
Vehicle control

- ADS-B
- Obstacle Map
- LiDAR
- Rule Engine
- Data fusion
- Mission Plan
- LiDAR
- Mission Plan

Vehicle control

Movement Automaton

Reach set estimation

Continuous control

\[\dot{y}(t) \]

\[e(t) \]

\[u(t) \]

\[y(t) \]

State observer

Low-level control

PID

Control

Controlled plant
Vehicle control

You have some nice **vehicle model**: The dynamic model of the UAV is given by a nonlinear first order state-space model:

\[\dot{x} = f(t, x, u) \]

Where \(x \in \mathbb{R}^{6+n}, n \in \mathbb{N}^{0+} \) is system state containing minimal information about vehicle position \([x, y, z]\) and orientation \([\theta, \varphi, \rho]\) (roll, pitch yaw), and \(u(t) \) is control signal belonging to \(R^k, k \in \mathbb{N}^{+} \), bounded by control set \(u(t) \in U \).

Then check **following conditions**:
- Observability of the system (Mandatory)
- Controllability of the system (Optional)
- Trajectory tracking control implementation (Optional)

Then you are ready to **construct movement automaton**
Movement Automaton

- ADS-B
- Obstacle Map
- LiDAR
- Rule Engine
- Mission Plan
- Reach set estimation

Movement Automaton

- Hover
- Forward flight
- Steady left turn
- Steady right turn

Vehicle control

Movement Automaton
Movement Automaton, not so simple …

\[
\text{InitialState} \in \mathbb{R}^n, h \in \mathbb{N}^+
\]

\[
\text{System: State} = f(\text{Time, State, Input}) \text{ or vectorField}
\]

\[
\text{Primitives} = \left\{ \text{MovementPrimitive}_i \left(\begin{array}{c} \text{vectorField,} \\ \text{minimalDuration,} \\ \text{parameters} \end{array} \right) \right\} i \in \mathbb{N}^+
\]

\[
\text{Transitions} = \left\{ \text{Transition}_j \left(\begin{array}{c} \text{MovementPrimitive}_i, \\ \text{MovementPrimitive}_k \end{array} \right) \right\} j \in \mathbb{N}^+
\]

\[
\text{Movements} = \left\{ \text{Movement}_m \left(\begin{array}{c} \text{MovementPrimitive}_i, \\ \text{MovementPrimitive}_p \\ \text{Transition}_r[0..*], \end{array} \right) \right\} m \in \mathbb{N}^+
\]

\[
\text{Buffer} = \{ \text{Movement}_s(\text{duration}_s, \text{parameters}_s) \} s \in \mathbb{N}^+
\]

\[
\text{Executed} = \{ \text{Movement}_t(\text{duration}_t, \text{parameters}_t) \} t \in \mathbb{N}^+
\]

\[
\text{Builder: Movement} \times \text{MovementPrimitive} \rightarrow \text{Movement}
\]

\[
\text{Trajectory: InitialState} \times \text{Movements}^u \rightarrow \text{State} \times \text{Time}, u \in \mathbb{N}^+
\]

\[
\text{StateProjection: Trajectory} \times \text{Time} \rightarrow \text{State(Time)}
\]
Movement Automaton, simple

I want to interface control law $u(t)$ from function to **discrete command chain**:

$$\text{MA}(\text{command sequence}) \rightarrow u(t)$$

Movement Automaton MA translates command sequence consisting from movements with applied duration to generate control signal $u(t)$ or reference trajectory $x(t)$

References:

[Stability, Controllability, Operation Modes] Alojz Gomola, João Borges de Sousa, Fernando Lobo Pereira, Model Predictive Control of Unmanned Air Vehicles with Obstacle Avoidance Capabilities, FEUP 2016, Exam report,
Reach set estimation
Reach set - Trajectory set & Graph

Trajectory set approximation:
- 1350 movements
- 270 paths

Graph approximation:
- 351 nodes
- 270 paths
Mission plan

Avoidance grid

LiDAR

Mission Plan

Vehicle control

Movement Automaton

Reach set estimation
Some mathematical background:

What you need?

- Define mission as **sequence of waypoints**
- Define **waypoint passing condition** to evaluate performance,

\[
\text{Mission (6)} \quad \text{which UAV should fly is given as set of ordered, feasible in terms of vehicle dynamic, waypoints in subspace of Space.}
\]

\[
\text{Mission} = \left\{ \text{waypoint}_1, \text{waypoint}_2, \ldots, \text{waypoint}_m : \forall i=1 \ldots m \text{waypoint}_i \in \text{Space} \right\}, \quad m \in \mathbb{N}^+, m \geq 2 \quad (6)
\]

Waypoint Passing (7) function maps system trajectory projection in Space and Mission waypoints (6) to a vector of passing times.

\[
\text{WaypointPassing} : \text{TrajectoryProjection} \times \text{Mission} \rightarrow \text{Time}^m \quad (7)
\]

Note. The Mission (6) is considered as successfully completed if and only if \(\forall \) waypoints are reached and in given order (check output of 7).
First, aircraft obtain their position information from the GPS satellites. Then, the ADS-B system simultaneously broadcasts the aircraft’s position to other aircraft, and to ground stations.
LiDAR

- LiDAR Avoidance grid
- Data fusion
- Movement Automaton
- Mission Plan
- Reach set estimation
- Vehicle control
- Rule Engine
- LiDAR Obstacle Map
- ADS
- Mission Plan
- Reach set estimation
Obstacle Map

- ADS-B
- LiDAR
- Rule Engine
- Mission Plan
- Reach set estimation
- Vehicle control
Avoidance Grid

Data fusion

Mission Plan

Vehicle control

Movement Automaton

Reach set estimation

LiDAR

Obstacle Map

ADS

Rule Engine

Reach set estimation

Mission Plan

Vehicle control

Movement Automaton

Reach set estimation

LiDAR

Obstacle Map

ADS

Rule Engine
Conditions

Avoidance grid sizing (Distance/Horizontal range/Vertical range)

1. **Distance** should not be greater than combined median range of sensors
2. **Horizontal/Vertical** range is bounded by:
 1. Sensor field median ranges from observation point
 2. Reach set boundary for selected distance
3. The minimal avoidance grid size is given as:
 \[
 \text{Distance} = \text{DecisionMaximumTime} \times \text{VehicleMaximumVelocity} \\
 \text{HorizontalRange} = \pm \text{MaxHorizontalDeviation(ReachSet)} \\
 \text{VerticalRange} = \pm \text{MaxVerticalDeviation(ReachSet)}
 \]

Cell size (Length, Horizontal step, Vertical step):

1. Length ~ average length of executed movement in given layer
2. Horizontal/Vertical step ~ average deviation of movements in given cells
 \[
 \text{Length} = \text{Average(Length(movementExecution))} \\
 \text{HorizontalStep} = \text{Average(Deviation(Horizontal(movementExecution)))} \\
 \text{VerticalStep} = \text{Average(Deviation(Vertical(movementExecution)))}
 \]
Example: Grid Scaling

Decision point 10m
LiDAR range 100m ⇒ Range: 10m

Calculate ReachSet ⇒ Lines in Picture
MaxHorizontalDeviation = \(\frac{\pi}{4} \) [rad]
MaxVerticalDeviation = \(\frac{\pi}{6} \) [rad]

Avoidance Grid boundary:
Distance: 10m
Horizontal range: \(\left(-\frac{\pi}{4}, \frac{\pi}{4} \right) \)
Vertical range: \(\left(-\frac{\pi}{6}, \frac{\pi}{6} \right) \)
Framework Summary

Key notes:

- **Movement Automaton** – interface between control and avoidance grid,
- **Sensor/Data Fusion** – interface between sensors/information sources and avoidance grid,
- **Reach set** – tells UAV where it can go from initial position with given maneuvering capabilities from Movement Automaton
- **Avoidance grid** – combines known world from Sensor/Data Fusion with Reach set for current vehicle state and applies Rules to find best escape trajectory in Field of Vision,
- **Rule engine** – contains set of Rules,

Addressed issues:

Some Results …
Static obstacle avoidance
Intruders avoidance

Position: [5.00, 0.00, 0.00]^T, Orientation: \(\alpha = 0.00^\circ, \beta = 0.00^\circ, \gamma = 0.00^\circ\), Goal: [55.00, 0.00, 0.00]^T
Actual Challenges

Weather

ATC
Airspace classification

We want to Fly in **Non-Segregated Airspace**

Space is separated into levels defined by boundaries:

- **Level C-F** – altitude in Flight Levels (FL)
- **Level G** – altitude in Above Ground Level (AGL)

Example of European Airspace classification (Czech republic)
Airspace classification (Detail)
ATC constraints – Czech Republic

Example of air traffic constraints is taken from Czech national air traffic control portal (http://aisview.rlp.cz/)
Weather constraints

- **UAV system** in general is more sensitive to weather conditions than standard manned aviation (icing, storms, turbulences)

- **Clouds** can generally render UAV sensing system

- Especially **thick fog renders LiDAR sensor range** tremendously

- Modern manned aviation system can provide **data necessary for weather situations** avoidance

Example of *advanced weather warning system* developed by Honeywell.

Extracted data will be used as a source of restrictions for UAV
Intruder avoidance priority

Our vision is based on *various projects*:
• Amazon Drone platform – fully autonomous UAV
• **NASA – UTM** (UAV Traffic Management) – rules in development
• JARUS – SAA regulation framework (in development)

The *rules of the air* are formulated (ICAO annex II.) *around avoidance priority*, *depending on technical capabilities* of manned aircraft type (Jumbo jet should avoid glider due higher maneuverability).

The *expected behavior of UAV platform* is given by following table:

<table>
<thead>
<tr>
<th>Intruder</th>
<th>Our vehicle</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manned aircraft</td>
<td>Any UAV</td>
<td>Manned aircraft</td>
</tr>
<tr>
<td>VLOS piloted UAV</td>
<td>VLOS piloted UAV</td>
<td>Coordinated avoidance</td>
</tr>
<tr>
<td>VLOS piloted UAV</td>
<td>Autonomous UAV</td>
<td>Autonomous UAV</td>
</tr>
<tr>
<td>Autonomous UAV</td>
<td>Autonomous UAV</td>
<td>Coordinated avoidance</td>
</tr>
</tbody>
</table>
Aviation classes for immediate avoidance

FIRST: Manned aviation in distress

Mayday, mayday, mayday!

SECOND Balloons

THIRD Gliders

For more Information: ICAO ANNEX II.
Aviation classes for immediate avoidance

FOURTH: Aerial fueling and towing

- **Fueling of aircraft**
- **Towing a sign, aircraft or other dependable load**
Aviation classes for immediate avoidance

FIFTH: Airships

Sixth: Manned aviation with propeller

But Lozio, I am not on this list...

You are here on the bottom of course

Pilots don’t like you, you need to avoid all manned aviation
Proposed unmanned aviation classes

Seventh: Unmanned aviation with standardized avoidance system

Eight: Unmanned aviation for VLOS operations piloted from ground
Right of the way rules

• *Right of the way rules* aid pilots in *avoiding each other visually*
• The rules are found:
 - Part 91 Federal Aviation Regulation (USA)
 - ICAO Annex 2 -> Chapter 3 - General Rules -> 3.2 Avoidance of collisions -> 3.2.2 Right of way (International)

• When *aircrafts are converging*, the *right of way* is generally given to the *least maneuverable aircraft* (higher class)
• The *aircraft now having the right of the way is to pass well clear of the aircraft not having the right of the way*

• *Application for rules of the air* in case of UAV seems *to be reduced to immediate avoidance* in case of manned aviation adversary
• The avoidance *rules can be applied between the same class of UAV*
Converging aircrafts of the same category

\[\alpha \geq 70^\circ \]

The aircraft on other right, has the right of the way
Converging aircrafts of the same category
Converging aircrafts of the same category

Turn right and stay away from approaching aircraft
Converging aircrafts of the same category

Return to original path behind other aircraft
Overtaking aircraft of the same category

Lower speed aircraft is being overtaken
Overtaking aircraft of the same category

The aircraft being overtaken has the right of the way
Overtaking aircraft of the same category

Overtake is executed from right
Overtaking aircraft of the same category

Overtake rule apply also for convergence under
\[\alpha < 70^\circ \]
Head on approach of same category

\[\alpha \geq 130^\circ \]

\[r \geq s_m \]

Applies when angle of approach \(\alpha \geq 130^\circ \), Safety margin \(s_m \) must be defined
Head on approach of same category

Both vehicles are taking right side avoidance
Summary - Right of the way

• Manned aviation defines only horizontal avoidance, vertical avoidance is considered in TCAS, horizontal avoidance will be added in ACAS-Xu

• Manned aviation does not define angle of approach α strictly, it is usually used following margins:
 - $180^\circ \geq \alpha \geq 130^\circ$ Head on avoidance (both avoiding)
 - $130^\circ > \alpha \geq 70^\circ$ Covering avoidance (the left avoiding)
 - $\alpha < 70^\circ$ Overtake (faster avoiding)

• Safety margin s_m for Head on avoidance is defined as sufficient distance to avoid vehicle induced turbulence or obstruction of airflow, in case of UAV it must be defined based on UAV class size (bigger UAV), this can induce additional problems

• Overall “rules of air” and “right of the way” should be amended to be compatible with UAV integration into non-segregated airspace

• Pilot judgement is always the main consideration, therefore manned aviation behavior is unpredictable to some extent
Last chat with UAV

Well Lojzo I see there is still a lot of challenges, to make me safe....
But when will be this feasible?

Our **Framework** is already covering:
1. Path planning,
2. Evolving world,
3. Adversarial,
4. Data fusion,
5. Static restrictions (somehow)

Now we are working on:
6. Weather,
7. Rules

That seems all nice, when I learn proper manners and add my crafty skills to avoid [6] Weather, I can finally fulfill my destiny:

To be useful for society

Well my friend it will take a lot of effort, but I will do my best to help you,
At least on theoretical level, then you can fulfill your destiny:

Deliver me that Pizza
Summary

Computational feasibility:
- Proposed method is computationally feasible, because its using only simplistic intersection and pruning algorithms for Reach Set estimation in bounded Avoidance Grid
- Full Reach set can be precomputed for finite number of initial states

Provided checks and functionality:
- Checking system dynamic/static constraints with finite precision
- Checking environment dynamic/static constraints
- Prediction of feasible trajectory in limited space
- Selection of optimal trajectory in limited space

Planned checks and functionality:
- Weather Flight restriction zones avoidance
- Rules of the air implementation
Q&A Session